
© 2023, Amazon Web Services, Inc. or its Affiliates.© 2023, Amazon Web Services, Inc. or its Affiliates.

K. Rustan M. Leino (he/him)
Sr Principal Applied Scientist
Amazon Web Services

Industrial experience with a
verification-aware programming
language

iFM 2023
Leiden, NL
14 Nov 2023

© 2023, Amazon Web Services, Inc. or its Affiliates.

My talk

Reflect on
 Lessons learned from working with engineers to verify software
 How this experience has influenced the language and its tooling

© 2023, Amazon Web Services, Inc. or its Affiliates.

Automated Reasoning at AWS

Use of sound logical tools and techniques to prove properties of software

To have lasting impact,
 the tools must be applied with every code check-in
To scale,
 the tools must be used by people outside the
 Automated Reasoning Group

© 2023, Amazon Web Services, Inc. or its Affiliates.

Dafny

Verification-aware programming language

 Java-like language
 Designed to support formal verification

Coming up on 16 years
Open source

© 2023, Amazon Web Services, Inc. or its Affiliates.

Dafny for every engineer

Is a programming language
Specifications are part of the language
 Not a bolt-on to non-verification language
Targets programmers
 Not type-theorists or logicians
 Uses curly braces
Used in teaching for 15+ years
 New book: Program Proofs (MIT Press)

Auto-active verification (interactive + automated)
 Centers on programs
 Proofs are part of the program text

© 2023, Amazon Web Services, Inc. or its Affiliates.© 2023 Amazon Web Services, Inc. or its Affiliates.

Demo
FindLast

© 2023, Amazon Web Services, Inc. or its Affiliates.

Public uses of Dafny at AWS

AWS Encryption SDK
AWS Database Encryption SDK
Cedar authorization policy engine

© 2023, Amazon Web Services, Inc. or its Affiliates.

Dafny leverage points

Write verified code
Write and verify once, compile to many
Abstract modeling

© 2023, Amazon Web Services, Inc. or its Affiliates.

Dafny design: program expressions, specification expressions

They are the same
 Same syntax
 Same semantics

Demo…

method FindLast<X>(arr: array<X>, x: X) returns (result: int)
 requires exists i :: 0 <= i < arr.Length && arr[i] == x

var b := exists i :: 0 <= i < arr.Length && arr[i] == x;

© 2023, Amazon Web Services, Inc. or its Affiliates.

Dafny design: program expressions, specification expressions

They are the same
 Same syntax
 Same semantics

Not all expressions are evaluated at run time
 Ghost declarations
 Specifications are always checked statically

var d := x + y + 1;
ghost var g := d + x;

ghost function IsBalanced(t: Tree): bool

© 2023, Amazon Web Services, Inc. or its Affiliates.

Dafny design: expressions vs statements

Expressions
 deterministic
 do not modify the program state
 terminate

Functions
 body is expression
 behave like in mathematics

Statements
 can be nondeterministic
 can modify the state
 can be specified to allow non-termination

Methods
 body is statement list

function Increase(x: nat): nat {
 var d := x + x;
 d + 1
}

method Increase(x: nat) returns (r: nat) {
 var d := x + x;
 return d + 1;
}

© 2023, Amazon Web Services, Inc. or its Affiliates.

Dafny design: importance that keywords convey right meaning

Example: Want statement that is
 checked at run time (like assume E; in some languages)
 assumed by verifier to hold (like assume E;)

 expect E;

© 2023, Amazon Web Services, Inc. or its Affiliates.

Keywords for Compiled vs. Ghost

Compiled Ghost
Variable var
Function function
Method method

© 2023, Amazon Web Services, Inc. or its Affiliates.

Keywords for Compiled vs. Ghost

Compiled Ghost
Variable var ghost var
Function function
Method method

© 2023, Amazon Web Services, Inc. or its Affiliates.

Keywords for Compiled vs. Ghost

Compiled Ghost
Variable var ghost var
Function function ghost function
Method method

© 2023, Amazon Web Services, Inc. or its Affiliates.

Keywords for Compiled vs. Ghost

Compiled Ghost
Variable var ghost var
Function function ghost function
Method method ghost method

© 2023, Amazon Web Services, Inc. or its Affiliates.

Keywords for Compiled vs. Ghost

Compiled Ghost
Variable var ghost var
Function function ghost function
Method method ghost method

lemma

© 2023, Amazon Web Services, Inc. or its Affiliates.

Keywords for Compiled vs. Ghost

Compiled Ghost
Variable var ghost var
Function function method

function
function
ghost function

Method method lemma

© 2023, Amazon Web Services, Inc. or its Affiliates.

Developer expectations: Dafny ecosystem

Language
Compiler(s)
Verifier
Documentation, training
IDEs
Standard library
Build system
Testing tools
Foreign function interface
Linters
Verification debugger
…

© 2023, Amazon Web Services, Inc. or its Affiliates.

Influence from customers

Unicode support

Handling failures
 Failure-compatible types

Change of definite-assignment rules
 stricter than required by sound verification
 expected by programmers, and catches common errors

© 2023, Amazon Web Services, Inc. or its Affiliates.

Simplify for customers: loop alternatives

Demo…

© 2023, Amazon Web Services, Inc. or its Affiliates.

Simplify for customers: Auto-accumulator tail recursion

function Filter<T>(s: seq<T>, p: T -> bool): seq<T> {
 if s == [] then
 []
 else if p(s[0]) then
 [s[0]] + Filter(s[1..], p)
 else
 Filter(s[1..], p)
}

© 2023, Amazon Web Services, Inc. or its Affiliates.

Experience: Specifications

The process of writing specifications uncovers design bugs

Writing specifications is hard
 Better specifications are usually more abstract

© 2023, Amazon Web Services, Inc. or its Affiliates.© 2023 Amazon Web Services, Inc. or its Affiliates.

Demo
SplitString

© 2023, Amazon Web Services, Inc. or its Affiliates.

Foreign-function interface (extern code)

Writing specifications for extern code is even harder

“Verification finds all bugs” can be misunderstood

© 2023, Amazon Web Services, Inc. or its Affiliates.

Foreign-function interface: difficulty

method {:extern} Concat<X>(a: array<X>,
 b: array<X>,
 limit: int) returns (r: array<X>)
 ensures r[..] == (a[..] + b[..])[..Max(0, Min(|a| + |b|, limit))]
 ensures fresh(r)

But perhaps the extern method
 expects limit to be non-negative
 returns a or b if the other is empty
 returns null in some cases

© 2023, Amazon Web Services, Inc. or its Affiliates.

Foreign-function interface: difficulty

method {:extern “Logger.Append”} LogEvent(s: string)
 ensures log.data == old(log.data) + [s]

method {:extern “Logger.Append”} LogEvent(s: string)
 modifies log
 ensures log.data == old(log.data) + [s]

✅

🚫

© 2023, Amazon Web Services, Inc. or its Affiliates.

Foreign-function interface: difficulty

function {:extern “System.DateTime.Now”} GetTime(): Time

method {:extern “System.DateTime.Now”} GetTime() returns (t: Time)

✅

🚫

© 2023, Amazon Web Services, Inc. or its Affiliates.

Foreign-function interface (extern code)

How to avoid errors in extern specifications?

à auditor tool
à expect statements
à run-time specification checking
à “bland externs”

© 2023, Amazon Web Services, Inc. or its Affiliates.

Proofs

For programmers

© 2023, Amazon Web Services, Inc. or its Affiliates.© 2023 Amazon Web Services, Inc. or its Affiliates.

Demo
Wildcard matching: declarative vs operational

© 2023, Amazon Web Services, Inc. or its Affiliates.

Automation

Early days of Dafny:
 Automation always

Then:
 Added repertoire of proof-authoring constructs

Now:
 Favor stability over automation

Still need:
 Helpful tools for proof construction
 Helpful tools for verification debugging
 Educate more

© 2023, Amazon Web Services, Inc. or its Affiliates.

Conclusions

Programming with specifications and proofs, in practice

 Listen to customer complaints
 Don’t be too defensive
 Innovate on behalf of customers

Need more automated-reasoning savvy users
 Teach!

dafny.org
program-proofs.com

