
Modular Verification Scopes via Export Sets and
Translucent Exports

K. Rustan M. Leino and Daniel Matichuk

Abstract Following software engineering best practices, programs are divided into
modules to facilitate information hiding. A variety of programming-language con-
structs provide ways to define a module and to classify which of its declarations are
private to the module and which are available to public clients of the module.

Many declarations can be viewed as consisting of a signature and a body. For
such a declaration, a module may want to export just the signature or both the sig-
nature and body. This translucency is particularly useful when formally verifying
a program, because it lets a module decide how much of a declaration clients are
allowed to depend on.

This article describes a module system that supports multiple export sets per
module. Each export set indicates the translucency of its exported declarations. The
module system is implemented as part of the verification-aware programming lan-
guage Dafny. Experience with the module system suggests that translucency is use-
ful.

1 Introduction

Software engineers constantly have to manage the complexity of the software they
are writing. One fundamental principle to follow is to try to isolate different pieces
of functionality and to limit the interfaces to the details of that functionality [9].
Programming languages provide various features for such information hiding, for
example, procedures that separate the what from the how, and classes and modules
that hide both implementations and internal state.

K. Rustan M. Leino
Amazon Web Services, e-mail: leino@amazon.com

Daniel Matichuk
Data61 CSIRO, e-mail: daniel.matichuk@data61.csiro.au

1

leino@amazon.com
daniel.matichuk@data61.csiro.au

2 K. Rustan M. Leino and Daniel Matichuk

When doing verification of software, the concerns are similar. But for verifica-
tion, the concerns go deeper than the concerns involved during compilation or type
checking. A compiler needs to know about the existence of certain methods and
other declarations in a module interface, and a type checker additionally needs to
know the type signatures of such declarations. For verification, a module interface
may choose to either reveal or keep hidden a part of the definition of a declaration.
For example, it makes a difference if the verifier is able to use the body of a func-
tion or just the signature and specification of the function. So, there is a need for
finer-granularity control of information hiding during verification.

In this paper, we motivate and explain the design of the module system in the
verification-aware programming language Dafny [4, 5]. Conspicuous among vari-
ous influences on the design are ML [6] and Modula-3 [8]. One of the contributions
is the way our module system lets exported declarations be either “provided” or “re-
vealed”. Another contribution is the working implementation of the module system,
which has now been in use for a couple of years.

While the module system provides considerable flexibility, one of our design
goals was to keep simple things simple. Our presentation also follows that format,
starting off with the obvious features and moving into the more advanced.

Finding ways to write modular specifications of programs, so that one can rea-
son about the programs modularly, has been one of the research agendas of Arnd
Poetzsch-Heffter (e.g., [10, 7, 11, 12]). It is therefore our privilege to contribute this
article in the Festschrift honoring Arnd Poetzsch-Heffter.

2 Preliminaries

We start by explaining the names introduced in modules and how modules can refer
to names declared in other modules.

2.1 Modules and Imports

A rudimentary chore that a module system helps with is organizing the names of
declarations in a program. Consider the following two modules.

module A {

type S = set<char>

}

module B {

function S(x: int): int {

x + 1

}

}

Modular Verification Scopes via Export Sets and Translucent Exports 3

Each of these modules introduces a declaration S, in A being a type synonym for sets
of characters and in B being a successor function on the integers. To make use of
these modules, a client module, say C, has to import them.

module C {

import A

import B

function CardPlusOne(s: A.S): int {

B.S(|s|)

}

}

With the fully qualified names A.S and B.S, there is no ambiguity as to what they
are referring to.

A module that imports another can pick a new local name to refer to the imported
module. This lets modules have long, meaningful names while clients can choose
abbreviations. To illustrate, the following module D introduces the local name M to
refer to the imported library MathLibrary.

module MathLibrary {

function Abs(x: int): nat {

if x < 0 then -x else x

}

}

module D {

import M = MathLibrary

function AbsDiff(m: int, n: int): nat {

M.Abs(m - n)

}

}

In fact, the import declarations in module C above are abbreviations for import

declarations that use as the local name the same name as the imported module. That
is, import A is simply an abbreviation for import A = A.

2.2 Nested Modules

Modules can be nested. The enclosing module refers to the declarations in the nested
module in the same way as for an imported module. It is also possible to import a
nested module, which provides the dubious pleasure of giving it an alias.

module Outer {

module Inner {

type T = int

}

import I = Inner

4 K. Rustan M. Leino and Daniel Matichuk

function Double(x: I.T): Inner.T {

2 * x

}

}

The names Inner.T and I.T refer to the same declaration (and since that declaration
is a type synonym, both of those qualified names refer to the type int).

As we have seen, a module can import “sibling modules”, that is, modules de-
clared at the same level of lexical nesting. However, it is never possible for a nested
module to refer to the enclosing module itself. This makes a module blissfully un-
aware of how deeply nested it is, giving it a kind of contextual independence.

Just like a declaration of a function or type, an import declaration also introduces
a new name. And like the names of other declarations, such a name has to be unique.
The name of the import can be used in prefixes of qualified names, as the following
example illustrates:

module G {

type T = string

}

module H {

import HereComesG = G

}

module I {

import H

function WelcomeString(): H.HereComesG.T {

"greetings"

}

}

The qualified name H.HereComesG.T gives I a way to refer to the type T declared in
G. But since I does not import G directly, the qualified name G.T is not defined in I.

As a final example of playing around with names, note that the right-hand side
of an import declaration can be a qualified name, provided that, as for all qualified
names, each part of the prefix is defined.

module J {

import H

import GG = H.HereComesG

function FarewellString(): GG.T {

"this has gone on for too long"

}

}

In other words, without the import H, the import declaration that refers to H in its
right-hand side would not be legal.

Modular Verification Scopes via Export Sets and Translucent Exports 5

2.3 Imports are Acyclic

We define an import relation on modules. A module X is related to a module Y in the
import relation if X contains an import declaration whose right-hand side designates
Y. This relation is in general not transitive, but it has to be acyclic, which is enforced
by the compiler or linker.

2.4 Opened Imports

Since an import declaration can introduce any local name for an imported module,
qualified names don’t have to get too long. However, there are situations where even
two extra characters (like M.) feel too long. In those cases, which should be kept to
a minimum, it is possible to import a module as opened. This causes the names of
the imported module to be poured into the set of names declared directly by the
importing module. Almost. The names declared directly in the importing module
get preference over any opened-imported names. Furthermore, names of different
opened-imported declarations are allowed to overlap, but trying to refer to them
generates an error.

For illustration, consider the following modules.

module K {

function Fib(n: nat): nat {

if n < 2 then n else Fib(n-2) + Fib(n-1)

}

const G := 9.81

function U(x: int): int {

x + 2

}

}

module L {

function U(x: int): int {

x - 2

}

}

module N {

import opened LocalNameForK = K

import opened L

function G(n: nat): nat {

Fib(n) + LocalNameForK.Fib(n)

}

function H(): nat {

G(12) // G refers to the local function G, not to LocalNameForK.G

}

6 K. Rustan M. Leino and Daniel Matichuk

function V(): int {

L.U(50)

}

}

Module N imports K and L under the local names LocalNameForK and L, respectively.
Both of the imports are opened, so the names declared in those modules are also
available in N without qualification. Consequently, both the unqualified and qualified
mention of Fib in function G are legal and refer to the Fib function declared in
module K. Using the unqualified name G in N refers to the function declared in N,
not to the constant G defined in K, since locally declared names are preferred over
opened-imported names. Finally, it is not an error to opened-import both K and L,
despite the fact that both of them declare a name U. However, an attempt to refer to
U without a qualification (e.g., by changing L.U to just U in function V) would result
in an “ambiguous name” error.

By preferring local names over opened-imported names and allowing duplicate
opened-imported names as long as these are not referred to without qualification,
our module design remains true to the motto that “declarations are unordered” in
Dafny. This is in contrast to, for example, ML-based languages, which resolve sim-
ilar ambiguities by ordering imports.

3 Export Sets and Translucency

So far, the set of names introduced in a module has been available indiscriminately
to any importer. This does not promote the use of information hiding. To make
it possible to limit what an importing module gets to know, Dafny makes use of
export sets. In its simplest form, an export set lets a module indicate which of its
names are available to importers. This makes it easy to encode the common idiom
that categorizes declarations as being either public (that is, available to importers)
or private (that is, for internal use only) to a module.

3.1 Export Sets

A module uses an export declaration to make manifest which declarations are avail-
able to importers. For example:

module M {

export

reveals F

function F(x: int): int { x + 1 }

function G(x: int): int { x - 1 }

}

Modular Verification Scopes via Export Sets and Translucent Exports 7

module Client {

import M

function H(x: int): int {

M.F(x) + M.G(x) // error: unresolved identifier: G

}

}

As indicated by the reveals clause of M’s export declaration, only one of M’s two
functions (F) is revealed to importers. In general, the reveals clause contains a list
of names. Analogously to the use of other kinds of clauses in Dafny, an export dec-
laration can have several reveals clauses, with the same meaning as concatenating
their lists of names into just one reveals clause.

An export set must be self-consistent. The essential idea is that if you project
the module’s declarations onto those that are exported, then all symbols must still
resolve and type check. This is most easily understood through an example.

module BadExportSet {

export

reveals T, Inc, Identity

type U = T

type T = int

function Inc(x: T): T { x + 1 }

function Identity(x: U): U { x } // error: U undeclared in export set

}

This module is not self-consistent, because it attempts to reveal function Identity

while keeping private the type U, which appears in the function’s signature. The
projection of BadExportSet onto its export set would look like:

module BadExportSet { // projection of the module onto its export set

type T = int

function Inc(x: T): T { x + 1 }

function Identity(x: U): U { x }

}

It is clear from this projection that the export set was not self-consistent, since U is
nowhere declared.

3.2 Translucent Exports

Even export declarations with selectively revealed declarations can give away more
information than intended to importers. This is because most declarations can be
considered to have two parts. For example, a function has a signature and a body.
A reveals clause that mentions a function reveals both the signature and body of
that function to importers. Dafny’s export declarations also have provides clauses.

8 K. Rustan M. Leino and Daniel Matichuk

Mentioning a function in a provides clause provides only the signature, not the
body, of the function to importers.

For the purpose of export sets, we think of every Dafny declaration as having a
signature part and a body part. Together, the signature and body parts make up the
entire declaration. What is included in the signature part depends on what kind of
declaration it is. For a function, the signature part includes the function’s name, its
type signature (that is, its type parameters, the in-parameters and their types, and
the result type), and the function’s specification (that is, its pre- and postcondition
and its frame specification). For a type declaration, the signature part is the name
of the type, its type parameters (including any variance annotations), and any type
characteristics that can be declared (e.g., supports equality, contains no references).
For a constant, the signature is the name and type of the constant, but not its defin-
ing expression. For a method or a lemma, the signature includes the name, its type
signature (type parameters, in- and out-parameters and their types), and its specifi-
cation.

The following example shows a mix of provides and reveals clauses.

module Accumulator {

export

provides T, Zero, Add, Get, Behavior

reveals GetAndAdd

datatype T = Nil | Cons(int, T)

function Zero(): T {

Nil

}

function Add(t: T, x: int): T {

Cons(x, t)

}

function Get(t: T): int {

match t

case Nil => 0

case Cons(x, tail) => x + Get(tail)

}

function GetAndAdd(t: T, x: int): (int, T) {

(Get(t), Add(t, x))

}

lemma Behavior(t: T, x: int)

ensures Get(Zero()) == 0

ensures Get(Add(t, x)) == x + Get(t)

{

// proof follows trivially from the function definitions

}

}

Again, the export set has to be self-consistent. The projection of module Accumulator

onto its export set looks like this:

Modular Verification Scopes via Export Sets and Translucent Exports 9

module Accumulator { // projection of the module onto its export set

type T

function Zero(): T

function Add(t: T, x: int): T

function Get(t: T): int

function GetAndAdd(t: T, x: int): (int, T) {

(Get(t), Add(t, x))

}

lemma Behavior(t: T, x: int)

ensures Get(Zero()) == 0

ensures Get(Add(t, x)) == x + Get(t)

}

In this projection, we have indicated that T is exported as an opaque type—the fact
that it denotes a datatype and has a certain list of constructors is kept private to
the module. To an importing module, functions Zero, Add, and Get are just arbitrary
functions. By calling lemma Behavior, an importer learns some properties of these
functions, but the importer has no way to prove these properties directly. In this way,
this lemma serves as an exported contract of the otherwise opaque functions.

By only providing, not revealing, type T, the Accumulator module retains the
ability to change the representation of the type without affecting any clients. For
example, the module can replace its declarations of T, Zero, Add, and Get by

type T = int

function Zero(): T { 0 }

function Add(t: T, x: int): T { t + x }

function Get(t: T): int { t }

or by

type T = int

function Zero(): T { 3 }

function Add(t: T, x: int): T { t + 2 * x }

function Get(t: T): int { (t - 3) / 2 }

without having to reverify any modules that import Accumulator.
Unlike the other declarations in Accumulator, function GetAndAdd is revealed in

the export set. This means that the function’s behavior is fully known to any exporter.
For example, this lets an importer prove assertions like

assert Accumulator.Get(t) == Accumulator.GetAndAdd(t, 5).0;

In Dafny, the verifier always reasons about calls to methods and lemmas in terms
of their specifications, never in terms of their bodies. Thus, there would be no dif-
ference between providing and revealing a method or lemma in an export set, so
we decided to reduce confusion by disallowing methods and lemmas from being
mentioned in reveals clauses (accompanied by a useful error message, of course).

Similarly, a name introduced by an import declaration can only be provided in
an export set, not revealed.

10 K. Rustan M. Leino and Daniel Matichuk

If a declaration happens to be mentioned in both a reveals clause and a provides

clause, it is the same as just revealing it. That is, the export set is like a set of
declaration signature parts and declaration body parts, so the export set is the union
of all of the parts added on behalf of reveals and provides clauses.

An export declaration can use the clause provides *, which is a shorthand for
providing all declarations in the module. Similarly, the clause reveals * is a short-
hand for revealing all declarations in the module that can be revealed and providing
the rest (that is, reveal * provides methods, since methods cannot be revealed).

3.3 Effect of Import Aliases in Export Sets

Export sets are only allowed to mention names declared in the module itself. For
example,

module P {

type T = int

}

module Q {

export

provides P

reveals U, V

import opened P

import R = P

type U = P.T

type V = T

}

is allowed, but adding T or P.T to either of the export clauses would not be allowed.
Note that T cannot be exported, despite the fact that the opened import allows it to be
mentioned unqualified inside Q. Stated differently, by marking an import as opened,
the ability to mention the imported declarations as unqualified is not inherited by
further importers.

Furthermore, neither U nor V could be revealed if the export set didn’t provide P.
More precisely, module Q declares three aliases to the module P, namely P and R and
the opened-import alias. The self-consistency check is not performed textually, but
uses these import aliases. Therefore, it is more correct to say that neither U nor V

could be revealed if Q’s export set didn’t provide some alias for the module where T

(which is mentioned in the body parts of U and V) is declared. So, module Q would
still be fine if provides P were replaced by provides R.

Modular Verification Scopes via Export Sets and Translucent Exports 11

3.4 Default Export Set

If a module does not contain any export declaration, everything is revealed as an ex-
port. This makes it simple to start learning about modules and imports, like we did
in Section 2 before we had mentioned the export declaration. In other words, with-
out any explicit export declaration, Dafny acts as if the module had been declared
with

export

reveals *

As soon as a module gives some export declaration, only what is explicitly ex-
ported is made available to importers. This makes it easy to go from the implicit
“everything is revealed” to an explicit “nothing is revealed”: simply add the empty
export declaration

export

That is, one keyword is all it takes.

4 Multiple Export Sets

Not all importers are alike. For instance, in some cases, a module may have some
declarations that all users will want to know about, whereas some others are useful
for companion modules, so-called friends modules. To support this, Dafny allows a
module to have multiple export sets, each providing its own view of the module.

4.1 Named Export Sets

The following module defines two export sets, named Public and Friends.

module R {

export Public

provides Combine

export Friends

reveals Combine

function Combine(x: set<int>, y: set<int>): set<int> {

x + y - (x * y)

}

}

The export set Friends reveals the signature and body of function Combine, whereas
the export set Public only provides the signature of Combine. Hence, an importer of
the Public view of the module is not able to verify an assertion like

12 K. Rustan M. Leino and Daniel Matichuk

assert R.Combine({2,3}, {3,5}) == {2,5};

whereas an importer of the Friends view is.
Each export set is checked separately to be self-consistent.

4.2 Importing a Named Export Set

When a module has several export sets, an importer indicates which export set to
import by appending to the module name a back-tick and the name of the desired
set. Here are two such client modules:

module R_PublicClient {

import R = R`Public

lemma Test() {

assert R.Combine({2,3}, {3,5}) == {2,5}; // error: not provable here

}

}

module R_FriendClient {

import R`Friends

lemma Test() {

assert R.Combine({2,3}, {3,5}) == {2,5};

}

}

Note that if the local name for the module is omitted, it defaults to the name of the
module, without the name of the selected export set. That is, import R`Friends is
the same as import R = R`Friends.

The back-tick notation is not new to import declarations in Dafny. Dafny uses
the back-tick notation in a similar way in frame specifications, where an expression
denoting one or a set of objects can be further restricted to a field of that object or
objects. Dafny borrows this use of back-tick in frame specifications from Region
Logic [1]

4.3 Eponymous Export Sets

When an export declaration omits a name, as in all of our examples before Section 4,
then it defaults to the name of the module itself. This eponymous export set is also
what gets imported if an import declaration omits the back-tick and the export-
set name. While most modules tend to have an eponymous export set, there is no
requirement to have one. For example, module R above does not have an eponymous
export set.

Modular Verification Scopes via Export Sets and Translucent Exports 13

4.4 Example

A common idiom is to use the eponymous export set to stand for the most com-
mon view of the module. This means that most importers only need to mention the
imported module in their import statement—no need for a back-tick and a specific
export-set name. Any additional export sets are then given names.

For example, module Accumulator in Section 3.2 defined an export set:

export

provides T, Zero, Add, Get, Behavior

reveals GetAndAdd

It can also define a Friends view that reveals how the type T is represented:

export Friends

provides Zero, Add, Behavior

reveals T, Get, GetAndAdd

Using the Friends view, a new module can augment the Accumulator functional-
ity, like this:

module AccumulatorMore {

export

provides A, Mul, Behavior

import A = Accumulator

import Acc = Accumulator`Friends

function Mul(t: Acc.T, c: int): Acc.T {

match t

case Nil => Acc.Nil

case Cons(x, tail) => Acc.Cons(c * x, Mul(tail, c))

}

lemma Behavior(t: Acc.T, c: int)

ensures Acc.Get(Mul(t, c)) == c * Acc.Get(t)

{

}

}

This module needs to know the full definition of T to implement Mul and needs
to know the full definition of Get to prove the lemma about Mul. Therefore, it im-
ports the Friends view of Accumulator. To be self-consistent, the module’s export
set must provide a way to understand the type Acc.T, which appears in the signa-
tures of the provided declarations Mul and Behavior. Adding Acc to the provides

clause would make the export set self-consistent. However, this would provide
all AccumulatorMore clients with the information entailed by the Friends view of
Accumulator (e.g., the full definition of T), which results in less information hiding
than desired. Therefore, module AccumulatorMore also declares an import for the
eponymous export set of Accumulator, here with the local name A. Providing A in-

14 K. Rustan M. Leino and Daniel Matichuk

stead of Acc in the export set makes it self-consistent without passing on any of the
Accumulator information that only friends need.

Here is a module that uses both the original and augmented functionality of
Accumulator:

module AccTest {

import A = Accumulator

import M = AccumulatorMore

lemma Test() {

var z := A.Zero();

var e := A.Add(z, 8);

A.Behavior(z, 8);

M.Behavior(e, 3);

assert A.Get(M.Mul(e, 3)) == 24;

}

}

A module decides which export sets to define and which parts of which declara-
tions to include in these export sets. However, the module does not control where
these export sets can be imported. That is, unlike in C++ [2], where a class defines
which other classes are its “friends”, the export sets in Dafny are more like the
“friends interfaces” in Modula-3 [8], where each importer gets to decide whether or
not it is a friend.

4.5 Combinations of Export Sets

If a module imports several views of a module, it obtains the parts from the union
of those views. Syntactically, an imported declaration can only be qualified by the
local name of an import that provides or reveals that declaration. But what is known
about the imported declaration (that is, only its signature part or both its signature
and body parts) is derived from the union of the imported parts, not just the import
used to qualify the declaration.

For example, consider the following two modules.

module S {

export AB reveals a, b

export B provides b

export AC provides a reveals c

const a := 10

const b := 20

const c := 30

}

module T {

import S0 = S`AB

import S1 = S`B

Modular Verification Scopes via Export Sets and Translucent Exports 15

import S2 = S`AC

lemma Test() {

assert S0.a == S2.a;

assert S0.a + S1.b == S2.c;

}

}

Module T can refer to S’s constant a as either S0.a or S2.a, since both the imports
S0 and S2 include the signature part of a, but trying to say S1.a in T would give
an “unresolved identifier” error. Because T imports the export set AB, the body part
of a (that is, the fact that a is defined to be 10) is known in T, regardless of if a is
syntactically referred to as S0.a or as S2.a (see the first assertion in the example).
Similarly, despite the fact that S1 only imports the signature part of b, S1.b is known
in T to equal 20 on account of import S0.

It is also possible to combine several imported views of a module into a single
local name for the module. This is done by following the back-tick with a set of
names. For example, the local names S0, S1, and S2 in module T can be combined
into the one local name S as follows:

module T’ {

import S`{AB,B,AC}

lemma Test() {

assert S.a == S.a;

assert S.a + S.b == S.c;

}

}

4.6 Building an Export Set as an Extension of Another

When a module defines several export sets, it is often the case that one is a superset
of another. For example, export set Friends is a superset of the eponymous export
set in module Accumulator in Section 4.4. To make such superset relations easier to
maintain, an export set can be declared to extend another. This is done by following
the name of the new export set by extends and the list of export sets that are being
extended.

So, instead of spelling out all the provided and revealed declarations of Friends
in Section 4.4, the Friends export set can be defined to extend the eponymous export
set:

export Friends extends Accumulator

reveals T, Get

16 K. Rustan M. Leino and Daniel Matichuk

5 The Road We Traveled

The module system in Dafny has gone through several major revisions. Ostensibly,
it seems that a module system just provides a way to carve up the namespace of a
program, which gives the illusion that the task of designing it would be trivial. Our
struggle with the design tells a different story.

Part of our difficulty stemmed from trying to rely on Dafny’s features for re-
finement [3], which are also based on modules, to be the mechanism for hiding
declarations and parts of declarations. Because every new refinement module cre-
ates a copy of the module being refined (to allow several different refinements of
a module), it was difficult to determine when two imported declarations were the
same and when they were different copies of some previously defined declaration.
After experimenting with this and finally declaring the attempt a failure, our next
quagmire became trying to deal gracefully with the legacy programs that had grown
out of our experiments.

Our experience shows that the need to be able to decide separately about export-
ing a declaration’s signature and exporting the declaration’s body is fundamental
for verification. This rendered an otherwise convenient keyword like public inad-
equate. Would we have more than one flavor of the keyword, like public_sig and
public_body? Or would we have a single keyword public that could designate dif-
ferent parts of a declaration, depending on where in the declaration the keyword was
placed? Searching for a consistent way to deal with this issue for different kinds of
declarations caused us to look at what subsets of parts of each declaration could
make sense to make visible. We were surprised to find that essentially every decla-
ration had a signature part and a body part, and we were delighted that no declaration
needed more than two parts.

There was also a design choice of how many visibility levels (like private and
public) to provide. Remembering Modula-3’s interfaces, we knew we could let the
program (as opposed to the programming language) make this choice if we intro-
duced named export sets in the language. This and the “every declaration has two
parts” realization eventually led us to export declarations with provides and reveals

clauses.
With export sets, our implementation of Dafny needed to be careful about what

information to use when resolving names, when type checking, and when producing
logical verification conditions. The aliasing of imports with different views made
this issue quite delicate, and all in all it added up to a substantial implementation
effort.

The current module system has seen two years of use without major issues.

6 Concluding Remarks

A module system that supports information hiding is important for any program-
ming language. For a verification-aware language like Dafny, a good module system

Modular Verification Scopes via Export Sets and Translucent Exports 17

not only explicates the things clients of a module can rely on versus the things the
module is free to change without affecting clients, but also enables modular veri-
fication. We have described the Dafny module system and given examples of how
its features can be applied when specifying and verifying programs. The module
system is characterized by its multiple export sets, its translucent provides exports,
and its transparent reveals exports.

Acknowledgements This work was done in 2016 when both of us were at Microsoft Research.
We are grateful to the Ironclad team at Microsoft Research, especially Chris Hawblitzel, Jay Lorch,
and Bryan Parno, who went through the pains of using the (several!) previous module systems of
Dafny, and offered constant feedback and valuable suggestions. Jason Koenig and Michael Lowell
Roberts were instrumental in experimenting with various module-system features that influenced
the current design.

References

1. Anindya Banerjee, David A. Naumann, and Stan Rosenberg. Regional logic for local reason-
ing about global invariants. In Jan Vitek, editor, ECOOP 2008 — Object-Oriented Program-
ming, 22nd European Conference, volume 5142 of LNCS, pages 387–411. Springer, 2008.

2. Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference Manual. Addison-
Wesley Publishing Company, 1990.

3. Jason Koenig and K. Rustan M. Leino. Programming language features for refinement. In
John Derrick, Eerke A. Boiten, and Steve Reeves, editors, Proceedings 17th International
Workshop on Refinement, Refine@FM 2015, volume 209 of EPTCS, pages 87–106, 2016.

4. K. Rustan M. Leino. Dafny: An automatic program verifier for functional correctness. In
Edmund M. Clarke and Andrei Voronkov, editors, LPAR-16, volume 6355 of LNCS, pages
348–370. Springer, April 2010.

5. K. Rustan M. Leino. Accessible software verification with Dafny. IEEE Software,
34(6):94–97, 2017.

6. Mark Lillibridge. Translucent Sums: A Foundation for Higher-Order Module Systems. PhD
thesis, Carnegie Mellon University, May 1997.

7. Peter Müller, Arnd Poetzsch-Heffter, and Gary T. Leavens. Modular invariants for layered
object structures. Science of Computer Programming, 62(3):253–286, 2006.

8. Greg Nelson, editor. Systems Programming with Modula-3. Series in Innovative Technology.
Prentice-Hall, Englewood Cliffs, NJ, 1991.

9. D. L. Parnas. On the criteria to be used in decomposing systems into mod-
ules. Communications of the ACM, 15(12):1053–1058, December 1972. Reprinted as
www.acm.org/classics/may96/.

10. Arnd Poetzsch-Heffter and Jan Schäfer. Modular specification of encapsulated object-
oriented components. In Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and
Willem P. de Roever, editors, Formal Methods for Components and Objects, 4th International
Symposium, FMCO 2005, volume 4111 of LNCS, pages 313–341. Springer, 2005.

11. Ina Schaefer and Arnd Poetzsch-Heffter. Using abstraction in modular verification of syn-
chronous adaptive systems. In Serge Autexier, Stephan Merz, Leendert W. N. van der Torre,
Reinhard Wilhelm, and Pierre Wolper, editors, Workshop “Trustworthy Software” 2006,
volume 3 of OASICS. Internationales Begegnungs- und Forschungszentrum für Informatik
(IBFI), Schloss Dagstuhl, Germany, 2006.

12. Ina Schaefer and Arnd Poetzsch-Heffter. Compositional reasoning in model-based verifica-
tion of adaptive embedded systems. In Antonio Cerone and Stefan Gruner, editors, Sixth

18 K. Rustan M. Leino and Daniel Matichuk

IEEE International Conference on Software Engineering and Formal Methods, SEFM 2008,
pages 95–104. IEEE Computer Society, 2008.

	Modular Verification Scopes via Export Sets and Translucent Exports
	K. Rustan M. Leino and Daniel Matichuk
	Introduction
	Preliminaries
	Modules and Imports
	Nested Modules
	Imports are Acyclic
	Opened Imports

	Export Sets and Translucency
	Export Sets
	Translucent Exports
	Effect of Import Aliases in Export Sets
	Default Export Set

	Multiple Export Sets
	Named Export Sets
	Importing a Named Export Set
	Eponymous Export Sets
	Example
	Combinations of Export Sets
	Building an Export Set as an Extension of Another

	The Road We Traveled
	Concluding Remarks
	References

