
A Polymorphic Intermediate Verification Language:
Design and Logical Encoding

K. Rustan M. Leino0 and Philipp Rümmer1

0 Microsoft Research, Redmond, leino@microsoft.com
1 Oxford University Computing Laboratory, philr@comlab.ox.ac.uk

Abstract. Intermediate languages are a paradigm to separate concerns in soft-
ware verification systems when bridging the gap between programming languages
and the logics understood by theorem provers. While such intermediate languages
traditionally only offer rather simple type systems, this paper argues that it is
both advantageous and feasible to integrate richer type systems with features like
(higher-ranked) polymorphism and quantification over types. As a concrete solu-
tion, the paper presents the type system of Boogie 2, an intermediate verification
language that is used in several program verifiers. The paper gives two encod-
ings of types and formulae in simply typed logic such that SMT solvers and other
theorem provers can be used to discharge verification conditions.

0 Introduction

Building a program verifier is a complex task that requires understanding of many do-
mains. Designing its foundation draws from domains like semantics, specifications, and
decision procedures, and constructing its implementation involves knowledge of com-
pilers and software engineering. The task can be made manageable by breaking it into
smaller pieces, each of which is simpler to understand. A successful practice (e.g., [10,
3, 4]) is to make use of an intermediate verification language [15, 0,9].

The intermediate verification language serves as a thinking tool in the design of the
verifier front end for each particular source language. As such, it must provide a level of
abstraction that is high enough to give leverage to the front end. At the same time, there
is a risk that the general translations of higher-leverage features become too cumber-
some to sustain good decision procedure performance. Some higher-leverage features,
like a fancy type system, provide safety to the front end by restricting what intermediate
programs are admissible. At the same time, there is a risk that such restrictions lead to
cumbersome encodings in the front end, especially compared to the encodings that are
possible by directly using the more coarse-grained type system of a decision procedure.

In this paper, we introduce the type system of the intermediate verification lan-
guage Boogie 2 developed by the authors, the successor of BoogiePL [7, 0]. Unlike its
untyped predecessor, whose type annotations were mainly used for some consistency
checks, Boogie 2 features an actual type system. Going beyond the Hindley-Milner style
types in the intermediate verification language Why [9], Boogie 2 features polymorphic
maps, higher-rank polymorphism, and impredicativity, which are useful in modeling
the semantics of a type-safe object store (as in Spec# or Java).

class Person { int age; bool isMarried; }

Fig. 0. An example code snippet from a source program.

type Ref ;
type Field α;
type HeapType = 〈α〉[Ref ,Field α]α;

const unique age : Field int;
const unique isMarried : Field bool;
var Heap : HeapType;

function IsWellFormed(HeapType) returns (bool);
const unique snapshot : Field HeapType;

Fig. 1. An example of how object-oriented program features, like those in Fig. 0, can be modeled
in Boogie (the language features used are introduced in detail in Section 1). Ref is a type and
Field is a unary type constructor. Type synonym HeapType is defined as the polymorphic map
type that represents the heap. IsWellFormed demonstrates that functions can take polymorphic
maps as arguments. For any r of type Ref , Heap[r , snapshot] has type HeapType , illustrating
that polymorphic maps can be arbitrarily nested (an instance of impredicativity). The modifier
unique is used to say that the constant declared has a different value than all other unique
constants, which for the 3 constants here also follows from the fact that their types are different.

In addition to introducing the polymorphic features of Boogie, we describe our
translation of Boogie’s polymorphic logic into simply typed logic, which is used by
many satisfiability modulo theories (SMT) solvers that support the SMT-LIB format [1].
In fact, we give two different translations into simply typed logic, and we present perfor-
mance figures from substantial benchmarks that compare these. The benchmarks come
from the Spec# program verifier [0], the VCC [4] and HAVOC [3] verifiers for C, and
Dafny [13], all of which build on Boogie. All of the benchmarks make extensive use
of so-called triggers required for e-matching [8], and our experiments give evidence to
that the triggers are properly maintained by our translations.

The contributions of our work are: (i) An impredicative type system for an interme-
diate verification language, featuring full higher-ranked polymorphism, (ii) two trans-
lations of the verification language, and especially its polymorphic maps, into simply
typed logic suitable for SMT solvers, (iii) experimental data comparing the performance
of the two translations with each other and with an (unsound) translation ignoring types.

1 Boogie 2 Types and Expressions

A Boogie program consists of a set of mathematical and imperative declarations that
define a set of execution sequences. The Boogie program is correct if none of those
execution sequences contains an error state [12]. Programs can be written by hand, but
most Boogie programs are machine generated by various program verifiers to encode
the semantics of given source programs. For example, the source-language declaration
in Fig. 0 can be modeled in Boogie as shown in Fig. 1, where the object store is repre-
sented explicitly by a variable Heap whose type is a map from object references and
field names to values (we explain this example in more detail later).

For the purposes of this paper, one can think of the imperative features of Boogie
as convenient syntactic shorthands for writing Boogie expressions. Hence, we focus on

Boogie’s expressions and their types. For further details of the language, we refer to the
Boogie 2 language reference manual [12].

1.0 Type Declarations

The built-in types of Boogie are booleans (bool), mathematical integers (int), and
bit-vector types of every size (bv0,bv1,bv2, . . .). In addition, there are map types,
which we describe below, and user-defined type constructors. A program can also de-
clare parameterized type synonyms, which are essentially like macros, thus providing
syntactic convenience but not adding to the expressiveness of the type system. A type
denotes a nonempty set of individuals, and the sets denoted by different types are dis-
joint. Each different parameterization of a type constructor yields a distinct type, each
denoting an uninterpreted set of individuals. For example, the type declarations in Fig. 1
introduce a nullary type constructor Ref and a unary type constructor Field . The sets
of individuals denoted by Ref , Field int , and Field Ref are all disjoint.

1.1 Expressions

Boogie expressions include variables and constants, function applications, logical, arith-
metic, and relational operators, as well as logical quantifiers, type coercions, and map
operations. All expressions are total: every well-typed expression yields some appro-
priately typed value that is a function of its subexpressions. For the most part, typing of
expressions is obvious and straightforward. Let us describe the more salient features.

Polymorphic Functions, Quantifications over Types. Functions can be polymorphic,
that is, they can take type parameters. Analogously, the bound variables in universal and
existential quantifiers can range over both individuals (of specified types) and types.
Polymorphism is useful because it allows a user to provide an axiomatization of, say,
pairs that is independent of the pair element types, while maintaining the type guarantee
that different types of pairs are not mixed up.

For example, Fig. 2 declares a binary type constructor Pair , along with a function
Cons for constructing a pair and a function Left that extracts the left element of a pair.
Type parameters and bound type variables are introduced inside angle brackets, like in
C# or Java. A function declaration in Boogie only defines the signature of the function;
properties of functions can be defined by axioms. The figure includes an axiom that
defines the relationship between Cons and Left . Note that the quantification is over
any element types α and β and any elements a and b of those types. Hence, the axiom
applies generically to pairs with any element types.

The meaning of a function depends on its type-parameter instantiation. That is, a
polymorphic function f is really a family of functions f̄ , one for each possible instan-
tiation (e.g., fint , fRef).

Type Coercions. Boogie infers instantiations for type parameters of function appli-
cations. Usually, they can be inferred from the types of the function’s arguments, but
sometimes it is also necessary to consider the context of the function application. In

type Pair α β;
function Cons〈α, β〉(α, β) returns (Pair α β);
function Left〈α, β〉(Pair α β) returns (α);
axiom (∀ 〈α, β〉 a : α, b : β • Left(Cons(a, b)) = a);

type Sequence α;
function Length〈α〉(Sequence α) returns (int);
function EmptySequence〈α〉() returns (Sequence α);
axiom (∀ 〈α〉 • Length(EmptySequence() : Sequence α) = 0);

Fig. 2. Examples of polymorphic functions and quantifications over types in Boogie. In the last
line, the quantifier ranges only over types, not over any individuals, and the type coercion makes
the application EmptySequence() well-typed.

particular, if a type parameter is used among the domain types in the function’s signa-
ture, then its instantiation in a function application can be inferred from the arguments.
But in the case that a type parameter is used only in the return type, then type inference
needs to consult the context. Type parameters that are not used in either the domain
types or the result type are not allowed.

For example, Fig. 2 declares a function that gives the length of a generic sequence.
Function EmptySequence returns a zero-length sequence of any type. Type parame-
ter α is used only in the return type of EmptySequence , which is common and use-
ful for this and similar functions. Hence, to infer the type parameter in an application
EmptySequence() , the context surrounding the application must be used.

An error is reported if an instantiation for type parameters cannot be determined
uniquely. To deal with such cases, the language offers a type coercion expression e : t ,
which has type t , provided t is a possible typing for expression e . For example, the
expression Length(EmptySequence()) is ill-formed because of the ambiguous type-
parameter instantiation; but with the type coercion in Fig. 2, the ambiguity is resolved.

Because the meaning of a polymorphic function is really that of a family of func-
tions, note that EmptySequenceint() has a different value than EmptySequenceRef () .

Maps. In addition to functions, Boogie offers maps. Like functions, maps have a list
of domain types and a result type and can be polymorphic. The difference is that maps
are themselves expressions (they are “first class”), unlike functions, which can appear
in an expression only when applied to arguments. This means that program variables
can hold maps (like Heap in Fig. 1).

Though they may have the appearance of higher-order values, maps are but first-
order individuals, and to “apply” them to arguments, one applies Boogie’s built-in map-
select operator, written with square brackets (to be suggestive of retrieving an element
at a given index of an array) [18]. For example, if m is a map of type [int,bool]Ref ,
that is, a map type with domain types int and bool and result type Ref , then the
expression m[5, false] denotes a value of type Ref . Due to maps, Boogie can in many
situations be used like a higher-order language (where functions can be passed around
as values), but still allows the use of efficient first-order reasoners.

If m is an expression denoting a map, i is a list of expressions whose types cor-
respond to the domain types of m , and x is an expression of the result type of m ,
then the map-update expression m[i := x] denotes the map that is like m , except that
it maps i to x [18]. Using common notation for arrays, the imperative part of Boogie
allows the assignment statement m[i] := x ; as a shorthand for m := m[i := x]; .

Boogie does not promise extensionality of maps, that is, the property that maps with
all the same elements are equal; for example, m and m[i := m[i]] are not provably
equal, but they are provably equal at all values of the domains. From our experience,
extensionality is not required for most applications; the motivation to exclude exten-
sionality by default is the better performance of decision procedures for non-extensional
maps. Where extensionality is needed, users can supply the required axioms themselves.

A novel and key feature of maps in Boogie is that they can be polymorphic. To
motivate this feature, let us consider one of the most important modeling decisions that
the designer of a program verifier faces: how to model the memory operated on by the
source language. For example, for a type-safe object-oriented language, one may choose
to model the object store (the heap) as a two-dimensional map from object references
and field names to values [22, 0,13]. Since the result type of such a map depends on
the selected field name, it is natural to declare the heap to be of a polymorphic map
type. (Without polymorphic maps, one either needs to introduce explicit cast functions
or split the one heap variable into several.)

As we already alluded to, Fig. 1 shows by example some Boogie declarations that
a verifier might use to encode the semantics of the object-oriented program in Fig. 0
(cf. [0,13]). In the example, Ref is used to denote the type of all object references,
Field α denotes the type of field names that in the heap retrieve values of type α , and
〈α〉[Ref ,Field α]α is the polymorphic map type of the heap itself. For instance, if r
is a reference, then Heap[r , age] is an integer and Heap[r , isMarried] is a boolean.

Boogie’s type system allows advanced uses of polymorphic maps, which is useful
for the kind of semantic models one defines in a program verifier. For example, it is
common to want to define properties of heaps, for example distinguishing heaps that
satisfy some sort of well-formedness condition from heaps that do not. A natural way
to do that is to start by defining a function on heaps, like IsWellFormed in Fig. 1. This
is an example of a higher-rank type.

Type parameters of maps are like those of functions: each type parameter must be
used in either the domain types or the result type of the map type, and it is an error
if type inference cannot uniquely determine the instantiations of type parameters. And
as for functions, a polymorphic map is really a family of maps, one for each possible
type-parameter instantiation. For example, a map m of type 〈α〉[int]α really denotes
a family of maps m̄ , and mint[E] has a different value than mbool[E] . It should also
be noted that the types [α]T and 〈α〉[α]T are different: the first is a type with a free
type parameter α and can be instantiated to any (monomorphic) map type [s]T , while
the second describes polymorphic maps from any type to T .

Equality among map types does not depend on the names or order of type parame-
ters. For example, the type 〈α, β〉[α, β]int is equal to 〈γ, δ〉[δ, γ]int . Polymorphism,
however, is significant: the types [int]bool and 〈α〉[α]bool are incompatible.

Equality. Equality in Boogie is standard mathematical equality, but the typing of equal-
ity expressions in Boogie is more liberal than is absolutely the standard. The equality
expression E = F is allowed if there is some instantiation of enclosing type parameters
that makes the types of E and F equal. Let us motivate this typing rule.

A common way to specify the effects of a source-language procedure is to use a
modifies clause that lists the object-field locations in the heap that the procedure is
allowed to modify. The modifies clause is then encoded into Boogie as a procedure
postcondition that specifies a relation between the procedure’s heap on entry, written
old(Heap) , and its heap on return, written Heap (see, e.g., [13]). For instance, to
encode that a procedure’s effect on the heap in the source language is limited to p.age
and p.isMarried , one can in Boogie use a postcondition like

(∀ 〈α〉 r : Ref , f : Field α • Heap[r , f] = old(Heap[r , f]) ∨
(r = p ∧ f = age) ∨ (r = p ∧ f = isMarried))

In order to type check this expression, it is necessary for the type system to consider
the possible instantiation α := int for f = age and α := bool for f = isMarried ,
and Boogie does exactly that. Being liberal in this typing rule does not cause any se-
mantical problems in Boogie: because different types represent disjoint sets of indi-
viduals, an equation simply evaluates to false if the two sides of the equation eval-
uate to individuals of different types. For example, for the f in the quantifier above,
f = age ∧ f = isMarried type checks but always evaluates to false .

1.2 Formalization of the Type System and Type Checking
The abstract syntactic category of types is described by the following grammar:

Type ::= α | C Type∗ | 〈α∗〉 [Type∗]Type
in which C ∈ C ranges over type constructors (with a fixed arity arity(C)) and α ∈ A
over an infinite set of type variables. We assume that C always contains the pre-defined
nullary constructors bool, int,bv0,bv1,bv2, Only those types are well-formed
in which type constructors receive the correct number of argument types, and in which
type parameters of polymorphic map types occur in the map domain or result types.

For two types s, t ∈ Type , we write s ≡ t iff s and t are equal modulo renaming
or reordering of bound type parameters. A type substitution is a mapping σ : A → Type
from type variables to types. Substitutions are canonically extended on all types, assum-
ing that variable capture is avoided by renaming bound type variables when necessary.

Formalizing the typing of expressions, the judgment V ° E : t says that in a
context with variable-type bindings V , expression E can be typed as type t . Figure 3
shows the most important typing rules. All other operators are typed as in the rule for
function application. In the figure and the whole paper, F denotes the set of declared
functions and constants, whereas X denotes an infinite set of variables.

Note that for any type-correct program, all type-parameter instantiations have been
resolved. But this does not mean that the application of a polymorphic function or map
can easily be replaced by a specific monomorphic instance, because of quantifications
over types. For example, the application of EmptySequence in Fig. 2 is resolved to
EmptySequenceα , but α is a quantified type variable that refers to any type; hence, the
axiom says something about every member of the EmptySequence family.

x 7→ t ∈ V
V ° x : t

V ° E : t
V ° E :t : t

f 〈ᾱ〉(s̄) returns (t) ∈ F
V ° Ei : σ(si) (for (Ei , si) ∈ (Ē , s̄))

V ° f (Ē) : σ(t)
∗

V ° E : s V ° F : t
σ(s) ≡ σ(t)

V ° E = F : bool

(V, x̄ 7→ t̄) ° E : bool Q ∈ {∀, ∃}
V ° (Q 〈ᾱ〉 x̄ : t̄ • E) : bool

V ° m : 〈ᾱ〉[s̄]t
V ° Ei : σ(si) (for (Ei , si) ∈ (Ē , s̄))

V ° m[Ē] : σ(t)
∗

V ° m : 〈ᾱ〉[s̄]t V ° F : σ(t)
V ° Ei : σ(si) (for (Ei , si) ∈ (Ē , s̄))

V ° m[Ē := F] : 〈ᾱ〉[s̄]t ∗

Fig. 3. The typing rules for Boogie expressions. The context of type judgments is a partial map-
ping V : X ⇀ Type that assigns types to variables. The rules marked with ‘*’ impose the side
condition dom(σ) = {ᾱ} . The typing rules show what it means for expressions to be type cor-
rect; they abstract over how type inference is done.

1.3 Matching Triggers

We have one more thing to say about expressions in Boogie, and it concerns the way
many SMT solvers handle universal quantifications, namely by selective instantiation.
Instantiations are based on (user-supplied or inferred) matching triggers, which indicate
which patterns of ground terms in the prover’s state are to give rise to instantiations [8].
Boogie has support for specifying matching triggers for quantifications. For example,

axiom (∀ x : t • {f (x)} fInverse(f (x)) = x);

specifies the trigger f (x) and says to instantiate the universally quantified variable with
any value appearing among the ground terms as an argument of function f . In an SMT
solver based solely on triggers, these are the only instantiations there will ever be. All
Boogie front ends make heavy use of triggers. (For an application that uses quantifiers
and an explanation of the design of triggers for that application, see [14].)

A trigger is a set of expressions, each of which will undergo the encoding into the
underlying logic that we are about to describe. However, it is important that the logi-
cal encoding not interfere with user-defined triggers or automatically inferred triggers,
since that might lead to poor performance (too many instantiations) or incompleteness
(too few instantiations).

2 Representation of Types as Terms

Automated theorem provers and SMT solvers typically offer only untyped or simple
multi-sorted logics as their input language (with the notable exception of Alt-Ergo [2],
which provides a polymorphic type system). With such a prover as the verification back
end, the expressions from the richer language have to be translated into the simpler
logic. We describe two approaches to this translation in Section 3: one that captures type
information using logical guards and one that encodes type parameters of polymorphic
functions as additional function arguments. In both cases, it is necessary to encode

Boogie’s types as terms (so that typing conditions can be expressed as formulae), which
is the subject of this section.

As a simply typed target language, we use a subset of the Boogie expression lan-
guage, restricting the available types to (i) the built-in types bool and int (other types
supported directly by the simply typed logic can be treated analogously to int), (ii) a
type U for (non-bool , non- int) individuals, and (iii) a type T for (encoded) types.
If necessary, expressions in this simply-typed language could be translated further to an
untyped logic by adding domain predicates and guards for the types bool, int,U , and
T . Because current SMT solvers are able to directly handle the four types, however,
such a translation will usually not be required. Furthermore, we introduce a function
symbol type : U → T that maps individuals to their type.

We encode types so that T forms an algebraic datatype. If the target logic has direct
support for algebraic datatypes, one may be able to build on it; in the scope of this paper,
we use functions and axioms to describe the encoding.

2.0 Type Constructors

Each type constructor C ∈ C gives rise to a function symbol C# : T arity(C) → T ,
as well as an axiomatization of a number of properties, including distinctness and
injectivity. To formalize that the images of different type-constructor functions C#

are disjoint, we introduce a function Ctor : T → int and, for each type construc-
tor C , a unique constant nC . Injectivity is achieved by defining selector functions
C−1, . . . ,C−n : T → T for each n -ary type constructor C :

(∀ x̄ : T • Ctor(C#(x̄)) = nC) ∧
arity(C)∧

i=1

(∀ x̄ : T • C−i(C#(x̄)) = xi)

Theoretically, further axioms are needed for a faithful model of the type system. How-
ever, because these additional axioms are of a kind that cannot be expected to be useful
for SMT solvers (e.g., statements about well-foundedness), we practically use only the
axioms shown above in the Boogie implementation.

2.1 Reduction of Map Types to Ordinary Type Constructors

The encoding of Boogie’s polymorphic map types is done by a reduction to normal type
constructors: a map type t containing the free type variables α1, . . . , αn (and arbitrary
bound variables) can be encoded like a type expression Ct α1, . . . , αn , for some fresh
constructor Ct . The access functions can then be seen and axiomatized as ordinary
functions select t , storet , based on the axioms of the first-order theory of arrays [18].

There is a caveat in this construction: if two map types s, t have common in-
stances u = σs(s) = σt(t) , then an encoding of u using either Cs or Ct will be
overly restrictive. In particular, it might happen that u is encoded as Cs in one part,
and as Ct in another part of the same formula, leading to incompleteness:

function f 〈α〉(α) returns (int);
axiom (∀ 〈α〉 m : [α] int • f (m) = 0); axiom (∀ 〈α〉 m : [int]α • f (m) = 1);

If s = [α] int in the first axiom happens to be encoded as Cs α , and t = [int]α in the
second axiom as Ct α , then the inconsistency of the two axioms will be lost: Cs α and
Ct α do not have any common instances. The solution is to define larger classes of type
constructors for map types: we abstract over map types and define constructors only for
“most general” map types. Let us be more precise.

Given two types s, t ∈ Type , we write t v s and say that t is an instance of s iff
there is a substitution σ such that σ(s) ≡ t . Observe that v is a pre-order on types,
but not a partial order because anti-symmetry is violated for types that differ only in
the names of free variables. The induced equivalence relation is denoted with ∼= : for
s, t ∈ Type , we define s ∼= t iff s v t and t v s . It is the case that ≡ ⊆ ∼= .

The pre-order v is canonically extended to TypeC = Type/∼= and partially or-
ders the set. In fact, (TypeC ,v) is a join-semi-lattice (i.e., any two types have a least
common upper bound) whose >-element is the class of type variables α . The strict
order @ satisfies the ascending chain condition (ACC): every ascending chain of types
in TypeC eventually becomes stationary. This is important, because it justifies the ex-
istence of most-general map types that are the basis for our map-type encoding.

Let MC ⊆ TypeC be the set of v -maximal type classes whose elements start with
the map type constructor, and let M be a set of unique representatives for all classes
in MC . The elements of M can be seen as skeletons of map types and determine the
binding and occurrences of bound type variables. Examples of types in M are:

[α]β [α, β] γ [α, β, γ] δ 〈α〉[α]α 〈α〉[α]β 〈α〉[α] (C α)

For every type t that starts with a map type constructor, there is a unique type m =
skel(t) ∈ M with t v m . For example, skel(〈α〉[C α, int]bool) = 〈α〉[C α, β]γ .
This means that every map type t (also types containing free variables) can be rep-
resented in the form σ(skel(t)) , whereby the substitution σ is uniquely determined
for all variables that occur free in skel(t) . We write flesh(t) for the unique substitu-
tion satisfying flesh(t)(skel(t)) = t whose domain is a subset of {α1, . . . , αn} , where
α1, . . . , αn are the free variables in skel(t) . For example, flesh(〈α〉[C α, int]bool) =
(β 7→ int, γ 7→ bool) .

Translation of Types to Terms. In order to encode types, for each type t ∈ M that
contains n free type variables α1, . . . , αn , we introduce a new n -ary function sym-
bol M#

t : Tn → T . We will use the notation Skel#(s) := M#
skel(s) for the skeleton

symbol of an arbitrary map type s , and Skel−i(s) := M−i
skel(s) for the selectors. Given

an instantiation µ : A → Term of type variables, types can then be translated to terms:

[[α]]µ = µ(α) [[C t1 . . . tn]]µ = C#([[t1]]µ, . . . , [[tn]]µ)

[[m]]µ = Skel#(m)([[flesh(m)(β1)]]µ, . . . , [[flesh(m)(βn)]]µ)

In the last equation, m is a map type 〈ᾱ〉[s̄] t such that skel(m) contains the free type
variables β1, . . . , βn (in this order of occurrence). Some examples are:

[[C T]]µ = C#(T#) [[[int]T]]µ = M#
[α]β(int

#,T#)

[[[T]S]]µ = M#
[α]β(T

#,S#) [[〈α〉[α]S]]µ = M#
〈α〉[α]β(S

#)

Symbols and Axioms of Maps with Map Reduction. The access functions select
and store can be seen and axiomatized as ordinary functions, based on the axioms of
the first-order theory of arrays [18]. For each map type m ∈ M , we introduce separate
symbols selectm and storem . Suppose that m = 〈ᾱ〉[s̄] t ∈ M contains the free type
variables β̄ = (β1, . . . , βn) (in this order of occurrence). Then, the access functions
have the following types:

selectm〈ᾱ, β̄〉(m, s̄) returns (t) storem〈ᾱ, β̄〉(m, s̄, t) returns (m)

It is necessary to include both ᾱ and β̄ as type parameters, because m is parametric in
the latter, and s̄ and t might be parametric in both. The semantics of maps is defined
by axioms similar to the standard axioms of non-extensional arrays [18] (ᾱ′ is a vector
of fresh type variables, and ᾱ 7→ ᾱ′ the substitution that replaces ᾱ with ᾱ′):

(∀ 〈ᾱ, β̄〉 h : m, x̄ : s̄, z : t • selectm(storem(h, x̄ , z), x̄) = z) ∧
(∀ 〈ᾱ, ᾱ′, β̄〉 h : m, x̄ : s̄, ȳ : (ᾱ 7→ ᾱ′)s̄, z : t •

x̄ = ȳ ∨ selectm(storem(h, x̄ , z), ȳ) = selectm(h, ȳ))

3 Translation of Expressions

We define two main approaches to translating typed Boogie expressions into equiva-
lent simply typed expressions: one that captures type information using logical guards
(Section 3.0) and one that encodes type parameters of polymorphic functions as ordi-
nary (additional) arguments (Section 3.1). The second encoding relies on the usage of
e-matching to instantiate quantifiers (in contrast to methods like superposition used in
first-order theorem provers), because typing information is generated such that triggers
can only match on expressions of the right type (also see [5]).

The following Boogie program is used as running example for the translations:

function Mojo〈α〉(α) returns (int); axiom (∀ x : int • Mojo(x) = x);
type GuitarPlayer ; axiom (∀ g : GuitarPlayer • Mojo(g) = 68);

Note that it is essential to take the types of the quantified variables into account to not
introduce inconsistent axioms.

3.0 Translation using Type Guards
There is a long tradition of encoding type information using type guards, e.g., [16,
5, 6]. As this translation is rather naive and has the disadvantage of complicating the
propositional structure of formulae, it has been claimed [5] that its performance impact
is prohibitive for many applications. We are able to show in Section 4, however, that
this is no longer the case with state-of-the-art SMT solvers.

The Mojo example is complemented with type guards as follows. Because the quan-
tified formulae are now guarded and only concern individuals of the right types, no
contradiction is introduced. The function i2u is defined below.

functionMojo#(U) returns (U); const GuitarPlayer# : T ;
axiom (∀ x : U • type(Mojo#(x)) = int#); // function axiom
axiom (∀ x : U • type(x) = int# ⇒ Mojo#(x) = x);
axiom (∀ g : U • type(g) = GuitarPlayer# ⇒ Mojo#(g) = i2u(68));

Function Axioms. During the translation, user-defined Boogie functions are replaced
with U -typed functions. For a function f 〈α1, . . . , αm〉(s1, . . . , sn) returns (t) such
that α1, . . . , αk do not occur in s1, . . . , sn (but only in t), while αk+1, . . . , αm oc-
cur in s1, . . . , sn (and possibly in t), this post-translation function f # has the type
T k ×U n → U . We will capture the original typing with an axiom of the shape:

(∀ x̄ : Ū , ȳ : T̄ • type(f #(ȳ , x̄)) = [[t]]µ) (0)

This axiom does not contain any quantifiers corresponding to αk+1, . . . , αm that occur
in s1, . . . , sn , which is advantageous for SMT solvers because the formula does not
offer good triggers for αk+1, . . . , αm . Instead, the mapping µ : A → Term that de-
termines the values of type parameters plays a prominent role. We define this mapping
using extractor terms, which are recursively defined over types and describe how the
type parameter values can be reconstructed from the actual arguments x̄ with the help
of the selector functions C−i defined in Section 2.0.

Suppose that α ∈ A is a type variable. Assuming that the term E encodes the
type t ∈ Type , the set extractorsα(E , t) specifies terms that compute α ’s value:

extractorsα(E , β) = if α = β then {E} else ∅
extractorsα(E ,C t1 . . . tn) =

⋃n
i=1 extractorsα(C

−i(E), ti) (C ∈ C)
extractorsα(E ,m) =

⋃n
i=1 extractorsα(Skel

−i(m)(E), flesh(m)(γi))

In the last equation, m is a map type 〈β̄〉[s̄] t such that skel(m) contains the free type
variables γ1, . . . , γn (in this order of occurrence). Some examples are:

extractorsα(x ,C β α) = {C−2(x)}
extractorsα(x , 〈β〉[C β α]α) = {C−2(M−1

〈β〉[C β γ] δ(x)), M−2
〈β〉[C β γ] δ(x)}

The extractor C−2(x) , for instance, can derive α ’s value from the instance C intbool
of C β α , resulting in C−2([[C int bool]]) = C−2(C#(int#,bool#)) = bool# .

A simple optimization (that is implemented in Boogie but left out from this paper for
reasons of presentation) is to keep argument or result types int and bool of functions,
instead of replacing them with U . This can reduce the number of casts to and from U
later needed in the translation.

Embedding of Built-in Types. SMT solvers offer built-in types like booleans, integers,
and bit vectors, whose usage is crucial for performance. We define casts to and from
the type U in order to integrate built-in types into our framework. For the built-in
types bool and int , we introduce the cast functions i2u : int → U , u2i : U → int ,
b2u : bool → U , u2b : U → bool and axiomatize them as:

(∀ x : int • type(i2u(x)) = int# ∧ u2i(i2u(x)) = x) ∧
(∀ x : U • type(x) = int# ⇒ i2u(u2i(x)) = x)

and analogously for bool . The axioms imply that i2u and b2u are embeddings into
U , and that u2i and u2b are their inverses. For simplicity, in the following translation
we insert casts in each place where operators over bool or int occur, although many of
the casts could directly be eliminated using the axioms. Such optimizations are present
in the Boogie implementation as well.

Translation of Expressions. Given an instantiation µ : A → Term of type variables,
the main cases of the translation are:

[[x]]µ = x (x ∈ X)

[[f (E1, . . . ,En)]]µ = f #([[E1]]µ, . . . , [[En]]µ)

[[E = F]]µ = b2u([[E]]µ = [[F]]µ)

[[E + F]]µ = i2u
(
u2i([[E]]µ) + u2i([[F]]µ)

) · · ·
[[E ∧ F]]µ = b2u

(
u2b([[E]]µ) ∧ u2b([[F]]µ)

) · · ·
[[(∀ 〈ᾱ〉 x̄ : t̄ • E)]]µ = b2u(∀ x̄ : Ū , ȳ : T̄ • type(x̄) = [[t̄]]µ′ ⇒ u2b([[E]]µ′))

[[(∃ 〈ᾱ〉 x̄ : t̄ • E)]]µ = b2u(∃ x̄ : Ū , ȳ : T̄ • type(x̄) = [[t̄]]µ′ ∧ u2b([[E]]µ′))

In the last two equations, ȳ is a vector of fresh variables, and µ′ = (µ, ᾱ 7→ ȳ) . In the
case that a type parameter αi occurs in some of the types t̄ , a more efficient translation
is possible by extracting the value of αi from the bound variables x̄ :

µ′(αi) ∈ ⋃m
j=1 extractorsαi (type(xj), tj)

The optimization is particularly relevant with e-matching-based SMT solvers, because
the formula resulting from the original translation often does not contain good triggers
for the variables ȳ : type parameters ᾱ are used only in types, which usually do not
provide good discrimination for instantiation.

3.1 Translation using Type Arguments

Our second translation works by explicitly passing the values of type parameters to
functions. In the context of SMT solvers, this allows us to completely leave out type
guards and leads to formulae with a simpler propositional structure, albeit functions
have a higher arity and more terms occur in the formulae. It has to be noted that this
second translation crucially depends on the usage of an SMT solver with e-matching:
such solvers are not able to exploit missing type guards, because typing information is
inserted in expressions in such a way that triggers can only match on expressions of the
right type. The translation trades generality for performance: while it is not applicable
with most first-order theorem provers (e.g., superposition provers), the experimental
evaluation in Section 4 shows a clear performance gain compared to the type guard
translation from the previous section. A similar observation is made in [5].

When using type arguments, the Mojo example gets translated as follows:

function Mojo#(T ,U) returns (U); axiom (∀ x : U • Mojo#(int#, x) = x);

const GuitarPlayer# : T ; axiom (∀ g : U • Mojo#(GuitarPlayer#, g) = i2u(68));

The Typing of Functions. A function f 〈α1, . . . , αm〉(s1, . . . , sn) returns (t) ∈ F
is during the translation replaced by a function f # with the type Tm ×U n → U , i.e.,
the type parameters are given the status of ordinary function arguments. It is unneces-
sary to generate typing axioms for f # , since typing information is inserted everywhere
in terms during the translation and does not have to be derived by the SMT solver.

Type Guards Type Arguments No Types
Z3 2.0

Boogie (2598) 2002/595/1, 0.781s 2000/597/1, 0.651s 1984/613/1, 0.813s
VCC (7840) 6999/839/2, 3.447s 6999/836/5, 2.181s 6999/836/5, 2.196s
HAVOC (385) 353/16/16, 0.709s 351/18/16, 0.524s 350/17/18, 0.367s

Z3 1.3
Boogie (2590) 1978/609/3 1.107 1974/611/5 1.212 1961/626/3 2.385

Fig. 4. Results for the different benchmark categories. In each cell, we give the number of times
the outcome valid/invalid/timeout occurred, as well as the average time needed for successful
proof attempts (i.e., counting cases with the outcome valid or invalid).

Translation of Expressions. We maintain both an instantiation µ : A → Term and
an environment V : X → Type that assigns types to variables during the translation:

[[x]]µ,V = x (x ∈ X)

[[f (Ē)]]µ,V = f #([[σ(ᾱ)]]µ,V , [[Ē]]µ,V)
[[E = F]]µ,V = b2u([[E]]µ,V = [[F]]µ,V ∧ [[tE]]µ = [[tF]]µ)

[[E + F]]µ,V = i2u
(
u2i([[E]]µ,V) + u2i([[F]]µ,V)

) · · ·
[[E ∧ F]]µ,V = b2u

(
u2b([[E]]µ,V) ∧ u2b([[F]]µ,V)

) · · ·
[[(Q 〈ᾱ〉 x̄ : t̄ • E)]]µ,V = b2u(Q x̄ : Ū , ȳ : T̄ • u2b([[E]](µ, ᾱ7→ȳ),(V, x̄ 7→t̄)))

The second equation assumes f has typing 〈ᾱ〉(s̄) returns (t) and that σ is the instan-
tiation of the type parameters ᾱ that is inferred when applying f to Ē . The types tE , tF
in the third equation are determined by V ° E : tE and V ° F : tF . In the last equa-
tion, ȳ is a vector of fresh variables, and Q ∈ {∀,∃} is a quantifier.

4 Experimental Results and Related Work

We quantitatively evaluate the two different translations of Boogie expressions, together
with a third unsound translation that simply erases all type information. The third trans-
lation is close to the translation used by the Boogie 1 tool, so that a comparison between
Boogie 2 and Boogie 1 is possible. The evaluated Boogie programs are:

– The Boogie and SscBoogie regression test suites: A collection of correct and in-
correct programs written in Boogie, Spec# [0], and Dafny [13] that make use of
polymorphism; also parts of the Boogie tool itself (a Spec# program) are included.

– Hyper-V verification conditions generated by VCC [4]: Boogie programs that stem
from a project to verify the Microsoft hypervisor Hyper-V.

– Benchmarks from the HAVOC tool [3]: Regression tests and verification conditions
to prove memory safety and invariants of various C programs.

Because the programs of the last two categories do not use polymorphism, the over-
head of our translations for simple problems (that could really be handled with the “No
Types” translation) is measured.

For each of the categories, we used Boogie 2 to generate verification conditions
with the different translations and write them to separate files. We then measured the

performance of the state-of-the-art SMT solver Z3 2.00 on the altogether more than
10,000 verification conditions. The prover was run on each verification condition with
a timeout of 120s (1800s for the Boogie tests), measuring the average time needed over
three runs. All experiments were made on an Intel Core 2 Duo, 3.16GHz, with 4GB.

Figure 4 summarizes the results. The time difference between the type argument en-
coding and the translation without types is always very small, the argument encoding is
even faster in two categories. The type guard encoding is close to the other translations
on the Boogie tests, but is on average about 55% slower on the VCC examples, and
performs similarly on the HAVOC examples. One explanation for this phenomenon is
that (in particular) VCC generates a large number of Boogie functions, which leads to
a large number of additional axioms in the type guard encoding.

Related Work. The intermediate verification language Boogie is most closely related
to Why [9], which offers ML-style polymorphism [21]. ML-style polymorphism (or “let
polymorphism”) is more limited than the higher-rank polymorphism in Boogie; for ex-
ample, it does not allow polymorphic map types nor general quantifications over types,
both of which are used heavily by some Boogie front ends. Our typing rule for equal-
ity is similar to the “heterogeneous equality” introduced in [17]. Meanwhile, compilers
have also explored the benefits of using typed intermediate languages [20].

Couchot and Lescuyer turn formulae with ML-style polymorphism into multi-sorted
and untyped formulae [5], taking advantage of built-in theories. They have implemented
their translations as modules of the Why tool [9] and report on some experiments. With
Simplify [8], they measure a 200% slowdown with their version of a type guard trans-
lation, and a 300% slowdown with their other encoding (which is somewhat similar to
our type argument encoding). In contrast, we measure a slowdown of at most 95% with
the type guards encoding and at most 45% with the type arguments encoding.

Bobot et al. show how to incorporate ML-style polymorphism directly into an SMT
solver [2]. Our type arguments translation is quite similar to the machinery they present.
It would be interesting to put to test their conjecture that building polymorphism into a
prover is a better solution than handling it through a pre-processing step.

There is a large body of work on the encoding of (typed) higher-order logic (HOL)
in first-order logic (FOL). Such translations primarily target FOL provers, in contrast to
SMT solvers as in our case. Meng and Paulson [19] enrich terms with type annotations
in the form of first-order functions and describe different translations, some of which are
sound, while others require proofs to be typechecked and possibly rejected afterwards.
Similarly, Hurd [11] describes translations from HOL to FOL in which type information
can be included in the operator for function application, which is similar to our type
argument encoding (and in particular the handling of map types). Translations in the
same spirit as our type guard encoding have been studied [6] for the Mizar language.

5 Conclusions

We have introduced the type system of Boogie 2, shown how its advanced type features
are useful to program verifiers in encoding program semantics, and shown how to trans-
late its polymorphic types and expressions into first-order formulae suitable for SMT

0 http://research.microsoft.com/projects/z3/

solvers. Our experimental data support the idea that including such advanced features in
an intermediate verification language is both desirable for verifier front ends and feasi-
ble for performance. Future work include further optimizations like monomorphization.

References
0. Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A modular

reusable verifier for object-oriented programs. In: FMCO 2005. LNCS, vol. 4111, pp. 364–
387. Springer (2006)

1. Barrett, C., Ranise, S., Stump, A., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org (2008)

2. Bobot, F., Conchon, S., Contejean, E., Lescuyer, S.: Implementing polymorphism in SMT
solvers. In: SMT 2008 (2008)

3. Chatterjee, S., Lahiri, S.K., Qadeer, S., Rakamarić, Z.: A reachability predicate for analyzing
low-level software. In: TACAS 2007. pp. 19–33 (2007)

4. Cohen, E., Moskal, M., Schulte, W., Tobies, S.: A practical verification methodology for
concurrent programs. MSR-TR 2009-15, Microsoft Research (2009)

5. Couchot, J.F., Lescuyer, S.: Handling polymorphism in automated deduction. In: CADE-21.
pp. 263–278 (2007)

6. Dahn, I.: Interpretation of a Mizar-like logic in first-order logic. In: FTP (LNCS Selection).
LNCS, vol. 1761, pp. 137–151. Springer (1998)

7. DeLine, R., Leino, K.R.M.: BoogiePL: A typed procedural language for checking object-
oriented programs. MSR-TR 2005-70, Microsoft Research (Mar 2005)

8. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program checking. J. ACM
52(3), 365–473 (May 2005)

9. Filliâtre, J.C.: Why: a multi-language multi-prover verification tool. Research Report 1366,
LRI, Université Paris Sud (Mar 2003)

10. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.: Extended
static checking for Java. In: PLDI 2002. ACM (2002)

11. Hurd, J.: First-order proof tactics in higher-order logic theorem provers. In: Technical Report
NASA/CP-2003-212448. pp. 56–68 (2003)

12. Leino, K.R.M.: This is Boogie 2. Manuscript KRML 178 (2008), available at http://
research.microsoft.com/~leino/papers.html

13. Leino, K.R.M.: Specification and verification of object-oriented software. In: Summer
School Marktoberdorf 2008. NATO ASI Series F, IOS Press (2009)

14. Leino, K.R.M., Monahan, R.: Reasoning about comprehensions with first-order SMT
solvers. In: SAC 2009. pp. 615–622. ACM (Mar 2009)

15. Leino, K.R.M., Saxe, J.B., Stata, R.: Checking Java programs via guarded commands. In:
FTfJP 1999. Tech. Rep. 251, Fernuniversität Hagen (May 1999)

16. Manzano, M.: Extensions of First-Order Logic. Cambridge Tracts in Theoretical Computer
Science, Cambridge University Press (1996)

17. McBride, C.: Elimination with a motive. In: TYPES 2000, Selected Papers. LNCS, vol. 2277,
pp. 197–216. Springer (2002)

18. McCarthy, J.: Towards a mathematical science of computation. In: IFIP Congress 62. pp.
21–28. North-Holland (Aug–Sep 1962)

19. Meng, J., Paulson, L.C.: Translating higher-order clauses to first-order clauses. J. Autom.
Reason. 40(1), 35–60 (2008)

20. Morrisett, G., Walker, D., Crary, K., Glew, N.: From System F to typed assembly language.
TOPLAS 21(3), 527–568 (May 1999)

21. Pierce, B.C.: Types and Programming Languages. The MIT Press (2002)
22. Poetzsch-Heffter, A.: Specification and verification of object-oriented programs. Habilita-

tionsschrift, Technische Universität München (1997)

